Finitely generated lattice-ordered groups with soluble word problem

نویسندگان

  • A. M. W. Glass
  • William W. Boone
چکیده

William W. Boone and Graham Higman proved that a finitely generated group has soluble word problem if and only if it can be embedded in a simple group that can be embedded in a finitely presented group. We prove the exact analogue for lattice-ordered groups: Theorem: A finitely generated lattice-ordered group has soluble word problem if and only if it can be `-embedded in an `-simple lattice-ordered group that can be `-embedded in a finitely presented lattice-ordered group. The proof uses permutation groups, a technique of Holland and McCleary, and the ideas used to prove the lattice-ordered group analogue of Higman’s Embedding Theorem. [Accepted and will appear in J. Group Theory in 2008.] —————————————– AMS Classification: 06F15, 20F60, 20B27.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Satisfaction of existential theories in finitely presented groups and some embedding theorems

The main result is that for every recursively enumerable existential consistent theory Γ (in the usual language of group theory), there exists a finitely presented SQ-universal group H such that Γ is satisfied in every nontrivial quotient of H. Furthermore if Γ is satisfied in some group with soluble word problem, then one can take H with soluble word problem. We characterize the finitely gener...

متن کامل

A classification of hull operators in archimedean lattice-ordered groups with unit

The category, or class of algebras, in the title is denoted by $bf W$. A hull operator (ho) in $bf W$ is a reflection in the category consisting of $bf W$ objects with only essential embeddings as morphisms. The proper class of all of these is $bf hoW$. The bounded monocoreflection in $bf W$ is denoted $B$. We classify the ho's by their interaction with $B$ as follows. A ``word'' is a function ...

متن کامل

Groups with poly-context-free word problem

We consider the class of groups whose word problem is poly-contextfree; that is, an intersection of finitely many context-free languages. We show that any group which is virtually a finitely generated subgroup of a direct product of free groups has poly-context-free word problem, and conjecture that the converse also holds. We prove our conjecture for several classes of soluble groups, includin...

متن کامل

Lattice-ordered Abelian Groups and Schauder Bases of Unimodular Fans

Baker-Beynon duality theory yields a concrete representation of any finitely generated projective Abelian lattice-ordered group G in terms of piecewise linear homogeneous functions with integer coefficients, defined over the support |Σ| of a fan Σ. A unimodular fan ∆ over |Σ| determines a Schauder basis ofG: its elements are the minimal positive free generators of the pointwise ordered group of...

متن کامل

Convex $L$-lattice subgroups in $L$-ordered groups

In this paper, we have focused to study convex $L$-subgroups of an $L$-ordered group. First, we introduce the concept of a convex $L$-subgroup and a convex $L$-lattice subgroup of an $L$-ordered group and give some examples. Then we find some properties and use them to construct convex $L$-subgroup generated by a subset $S$ of an $L$-ordered group $G$ . Also, we generalize a well known result a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007